
Most Repeated Errors in COM-301
Midterm 2024

General Feedback
1. Be careful about what is asked and answer only this, e.g., do not answer a fix if the

question is asking “what is the vulnerability”.

Access Control & Security Principles

Q1

- Applying setuid to the document (hybris_plans.dwg) rather than the program.
Setuid applies to executables not to (non-executable) data files.

- Incorrectly writing the setuid permission. The correct notation is -rwsr-xr--. Other
notations were only given partial points.

- Giving write access to everyone to the document (hybris_plans.dwg) and
consequently removing any notion of access control on that file which makes the
configuration insecure. This violates numerous security principles.

Q2

- Claiming that least privilege is fulfilled. The principle states that principals should
be given only the rights necessary to perform their tasks. However, managers (other
than the CEO, and unrelated to the designer team) can also execute the program, a
violation of least privilege.

- Giving a wrong justification to why it’s not fulfilled.
o Some students confused the least privilege principle with other principles

and thus gave a mismatched justification.
o Arguing about the security of the configuration rather than the principle,

e.g., world-writable sensitive documents is insecure hence violates the least
privilege.

o Arguing that Dave should not have some permission as the owner. But
Dave is also part of the designer group, with legitimate access to the design
files. While the idea is correct only partial points were given to this
justification.

Q3

- Justifying outside the emergency deletion procedure. E.g., some argue that fail-
safe default is not followed since the plan will leak in the case where they fail to
detect a spy. This justification of the fail-safe default principle is not about the
mechanism or procedure. Imagine the emergency deletion procedure as an
algorithm, it needs a one-bit input signal: a detected spy sets the input to 1,
otherwise 0. A failure of spy detection means the algorithm receives the input signal
as 0, and the algorithm does not delete anything. From the algorithm perspective,
no deletion is the expected output. In other words, a failure of spy detection is NOT
a failure of the emergency deletion procedure.

- Justifying the principle narrowly from the specific example given in the lecture.
E.g., some argue the deletion is based on the detection of a spy, which is blocklist
based, instead of allowlist based. This justification only receives partial points,
because it is unclear how this specific scenario can use an allowlist based method:
does it really make sense to say that the design document should only be created
under certain conditions, otherwise it shall not be created as a file? How can a
company operate in this case?

- Not addressing the specific scenario of this question. Some people argue that
fail-safe default is not followed because the system does not by default go back to a
“safe state” without further explanation. What is the “safe state” in this emergency
deletion scenario? What is a “failure” when it is about fail-safe default?
Paraphrasing the lecture materials without addressing the scenario of this question
receives no point.

- Confusing complete mediation with the best-possible or finest-granular
authorization check. To quote from the lecture, complete mediation indicates that
every access to every object must be checked for authority. The emphasis is on the
completeness of checking; however, it says nothing about whether the check itself
is “good” or “fine grained” enough to catch every possible problem. The fact that
the file system in this question uses a UNIX-like permission system with a role for
each user means that the access is indeed mediated. If the execution permission is
given to the management group and Carla tries to run the program, the file system
verifies that Carla, as a logged in user, is part of the group that has the execution
permission.

- Giving a mismatched justification for the chosen principle. This mistake exists
under every given principle. For example, some people argue that it is unnecessary
to give permission to the whole management team given that Carla, the CEO,
should be the only one who can delete. This argument itself is not wrong; however,

this falls into the least privilege principle (NOT separation of privilege), which is not
among the list of given principles.

Mandatory Access Control

Q4

- Not applying the theory to the question: Most of the point deductions were
because the answer only explained BLP and the No Read Up property, but didn’t
apply it to the problem at hand. It’s critical for the answer to clearly show that one of
the classifications (TS) dominates the other (U), and that the objects and groups
concerned are associated to these classifications. You need to show that you can
apply the theory to a given example, and not just recite the content of the class.

Q5

- Proposing to use declassification as covert channel: Most wrong answers refer to
the declassification process as the covert channel used to transfer info from the
Casting Directors to the Casting members. There is two main issues with such
answers: (1) declassification process is set up by the MAC and by definition will hide
sensitive info (it is not the user who decides how it’s done), so, when declassified,
the list of casting members will be empty, since the names are meant to be kept
hidden from the unclassified level. (2) declassification by itself does not hide
information in a valid message, which contradicts the definition of a covert channel.
Answers that include covert channels like hiding messages in white space of other
documents were given partial or full points depending on their argumentation.

- Violating the No Write Down policy: Many incorrect answers violate the no-write-
down policy by allowing the Casting Directors from writing in the equipment list or
other unclassified files. Answers mentioning a declassification through which the
directors get files into the casting member’s level, were given partial or full points
according to whether the declassification holds in their case.

- Using a channel that is not covert:
o Using external communication channels without including covert codes

in messages or with ambiguous modifications: Many answers suggest
communication channels outside the studio like (messaging, meeting in a
coffee shop, …). While such channels would get the message from the
directors to the members, it is not a covert channels (which we ask for
explicitly) as the message is in the clear and not hidden in an allowed
message by the MAC.

o Other notable mentions: Using encryption as covert channel (check slides),
subjects temporarily lowering their level to unclassified to write down
(categorically disallowed in BLP), and implicit assumptions about the
existence of a read timestamp log.

- Incomplete descriptions of the covert channel: Some answers lost partial points
because they did not fully describe the covert channels. Examples of missing
information: how to map the message to the list of names, and how to make the
message not raise alarms by the MAC or other participants.

Authentication

Q6

- Improper justifications: Many answers referred to the “salt being in the clear” as
being the sole reason of making the dictionary attack possible, salt do not need to
be encrypted nor hashed. If a system does not use salts, then one can precompute
hashes and attack the whole database; if a system uses salts, the attack should
now be made per-salt (and hence, per-user) and is therefore more expensive to
conduct for a whole database.

- Not answering the question: Many answers forgot to answer both questions: “how
to do the attack” and “why is the attack feasible”, answering only one of them.
Some referred explicitly to a brute-force attack instead of a dictionary-based one.

Q7

- Not properly including the salt: many answers miss to include the salt in the entry.
Doing so actually makes the hash unusable. To authenticate, one needs the salt to
compute the hash to compare them. If the salt is not present, it’s impossible to
compute H(provided_password, salt).

- Complex answers: There is no need to have something more complicated than
“H(pwd, salt), salt”. Anything extra is unnecessary.

Q8

- Saying the attacker can “reverse the hash”: It is incorrect because hashing is a
one-way process. Unlike encryption, which can be decrypted with a key, hashing
cannot be undone to retrieve the original input. In our case, it is then impossible to
retrieve passwords like that.

- Proposing to bruteforce or find the salt: Many students argued about the fact that
an adversary could find the salt and/or bruteforce it because it takes only 4 values.
However, the goal in here what either to precompute it, or to use the salt directly

stored in the line of the password to crack. Hence, it was clearly not the goal of the
attack and furthermore does not help the attacker.

- Not being precise or incomplete description: Answers only mentioning a
dictionary attack were not given points since dictionary attacks are not feasible for
any salt. To get full points, the answer must contain more details, for example the
number of tables to pre-compute.

Cryptography

Q9

- Answering “no” because the server public key is public: while everyone can
encrypt arbitrary values using the server’s public key, only the sensors know the
MAC key, and only the sensors are able to compute a valid MAC.

- Forgetting to mention the key: the MAC guarantees plaintext integrity because the
key k is not known to the adversary.

- Answering “no” because of replay attacks: while replay attacks are possible, they
do not influence plaintext integrity, and the replayed value is still a value measured
by a sensor.

- Brute-forcing the MAC: some answers propose to record many MACs for different
values, and (assuming that the number of possible values is small) want to brute-
force the secret MAC key k. Even if the message space of the MAC is small and even
given the fact that the MAC is deterministic, the key comes from a cryptographically
large set, and a brute-force is infeasible (by construction!).

Q10

- Claiming that we can use a public-key to decrypt a public-key emessage. This is
obviously wrong as we need the private key to decrypt such a cipher.

- Incomplete justifications. If argued that confidentiality holds, the justification had
to include arguments for cipher encryption, MAC and hash (need to argue that each
of them is secure wrt confidentiality).

Q11

- Claiming that non-repudiation is the issue: Having non-repudiation will not stop
replay-attacks. Non-repudiation will ensure that the author of the message will not
be able to deny writing it, but will not prevent replay attacks.

- Claiming that the lack of acknowledgment from the server is the issue: This is
orthogonal to the problem described in the question. Having the server
acknowledge the message from the sensors will not prevent replay attacks.

Q12

- Incomplete answers: When introducing a new component to the scheme, such as
a unique id for each sensor, or a challenge, it needs to be clearly defined (Ex: “...,
where sensor_id is a unique id assigned to each sensor”). Secondly, make sure to
write the full scheme when proposing a solution. If only Enc(...) is explicit, we
cannot assume what format you chose for the rest of the scheme (MAC, DS, Hash).

- Using MAC with an asymmetric key: MAC is a symmetric primitive. When using an
asymmetric scheme, you have to use digital signatures for integrity.

- Suggesting a nonce of counter without stating it has to be unique for each
sensor: When suggesting a challenge-response protocol for freshness, a challenge
is always assumed to be unique for each message exchange with the server.
However, when suggesting the use of a nonce or counter for freshness, you have to
explicit the fact that it is unique for each sensor, or it will not thwart replay attacks
(two messages from two different sensors could still look the same)

- Suggesting a more granular time format to solve the issue: Although the low
granularity of the time field in the message makes the risk of collision between two
different messages from two different sensors lower, having a very granular time
field in the message will NOT thwart replay attacks. In this situation, if the server
receives two identical messages, it will still not be able to tell if it is the same
messages replayed or two identical messages from different sensors (even if it will
happen with lower probability).

Q13 (No MRE :))

Q14

- Wrong definition of second pre-image resistance: Second pre-image resistance
implies that given input x, it is hard to find another input x’ having the same hash
value. Many answers mentioned in the definition that adversary has not the input
but only the hash value h(x) and can generate x’ such that h(x) = h(x’). Note that, if
adversary can do that it is a violation of first pre-image resistance, since violating
first pre-image resistance does not require to reverse the hash function to its
original value, any value in the input domain of the hash function should suffice.
Such answers were granted only with partial points.

- Putting the absence of collisions as the reason to have second pre-image
resistance: In some exam works, it was stated that second pre-image resistance is
necessary to avoid collisions. This argument contains two errors. First, having
second preimage resistance does not imply the absence of collisions, it only
implies that it is computationally hard to find them for a given input x. The absence

of collisions is a much stronger property than the second preimage resistance,
which normally does not hold for the hash functions since their input space is
infinite, while output space is limited (i.e. a map from 2^1024 values to 2^512
values always have at least two input values mapped to the same output). Second,
the presence of random or deliberate collisions is not a security issue within the
given threat model (sending spam).

- Some students proposed an alternative threat model (impersonating other users,
poisoning the database) where deliberately crafted collisions can bring benefits to
some adversaries. Such answers were graded with full points.

	General Feedback
	Access Control & Security Principles
	Q1
	Q2
	Q3

	Mandatory Access Control
	Q4
	Q5

	Authentication
	Q6
	Q7
	Q8

	Cryptography
	Q9
	Q10
	Q11
	Q12
	Q13 (No MRE :))
	Q14

